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Abstract
Concurrent garbage collection is highly attractive for real-time sys-
tems, because offloading the collection effort from the executing
threads allows faster response, allowing for extremely short dead-
lines at the microseconds level. Concurrent collectors also offer
much better scalability over incremental collectors. The main prob-
lem with concurrent real-time collectors is their complexity. The
first concurrent real-time garbage collector that can support fine
synchronization, STOPLESS, has recently been presented by Pizlo
et al. In this paper, we propose two additional (and different) al-
gorithms for concurrent real-time garbage collection: CLOVER and
CHICKEN. Both collectors obtain reduced complexity over the first
collector STOPLESS, but need to trade a benefit for it. We study the
algorithmic strengths and weaknesses of CLOVER and CHICKEN
and compare them to STOPLESS. Finally, we have implemented all
three collectors on the Bartok compiler and runtime for C# and we
present measurements to compare their efficiency and responsive-
ness.

Categories and Subject Descriptors D.1.5 [Object-oriented Pro-
gramming]: Memory Management; D.3.3 [Language Constructs
and Features]: Dynamic storage management; D.3.4 [Proces-
sors]: Memory management (garbage collection); D.4.2 [Storage
Management]: Garbage Collection

General Terms Algorithms, Design, Performance, Reliability

1. Introduction
Garbage collectors automatically reclaim dynamically allocated
objects when not required by the program any more. Garbage col-
lection is widely acknowledged for supporting fast development of
reliable and secure software. It has been incorporated into modern
languages, such as Java and C#. An interesting question that arises
is how to adapt garbage collection for real-time computation, where
(high) responsiveness should be guaranteed, and (short) deadlines
must be met. Traditional stop-the-world collectors are not ade-
quate since a collection may take too long, preventing the program
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from responding on time. Concurrent mark-sweep and reference-
counting collectors (e.g., [11, 13, 22, 1]) can be adapted to become
real-time by taking special care of several issues, such as schedul-
ing, triggering, stack-overflow, etc. However, as these collectors do
not move objects, some programs may face bad fragmentation and
run out of memory, thus failing to meet deadlines. There seems to
be an emerging consensus that some form of partial compaction
must be supported to obtain real-time memory management sup-
port.

Historically, real-time compacting garbage collectors start with
Baker’s proposed real-time collector [3]. Baker’s collector was
incremental and built for uniprocessors, meaning that the collector
and the program threads ran on the same processor, alternating
CPU usage over time. Two problems make this collector inadequate
for modern systems. First, multiprocessor support is becoming
mandatory for modern applications—even in the real-time space.
Second, the collector’s share of the CPU is proportional to the
program allocation rate—therefore, if a program performed a burst
of allocations at a specific garbage collection phase, the program
would have to yield almost all of its CPU share to the garbage
collector, causing an inevitable deadline miss.

To solve this problem, time-based collectors were proposed by
Robertz and Henriksson [27]. In this setting, the collector does
not get a share of the CPU when the program allocates. Instead,
the collector is always entitled to a fixed constant fraction of the
CPU time, and this fraction is computed according to the program
allocation rate. A limit of around 50% for collector share of the
CPU is typically used in modern real-time collectors such as IBM’s
Metronome [2]. However, the length of the collector scheduled
quantum is required to be of substantial length (hundreds of mi-
croseconds currently) and may need to grow when using very large
scale parallel systems. This substantial collector quantum limits the
ability to improve responsiveness.

Concurrent collectors seem highly appealing for obtaining high
responsiveness. As a concurrent collector runs on a different core
(or processor) off-loading work from the program, the program
may be able to meet strict deadlines. However, concurrent collec-
tors that move objects (even non real-time) are quite rare [17, 18, 8].
Herlihy and Moss’s lock-free collector [17] has an unbounded re-
sponse time and space overhead, and is thus inadequate for real-
time support. Hudson and Moss [18] and Cheng and Blelloch [8]
propose a elegant and efficient concurrent copying collector. How-
ever, they require that either the program threads use locks to syn-
chronize; otherwise, the collector introduces locks. Thus, they can-
not support a lock-free system. A first concurrent real-time garbage
collection algorithm, STOPLESS, that supports lock-free parallel
computation with fine-grained synchronization was presented by
Pizlo et al. [25]. STOPLESS obtains fast response times at the lev-
els of ten microseconds, improving drastically over response time
provided by previous technology.
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In this paper we propose two additional and different such col-
lectors: CHICKEN and CLOVER. CHICKEN and CLOVER are con-
current and real-time just like STOPLESS. They provide compaction
support for dealing with fragmentation, they support lock-freedom
and fine-grained synchronization, and they can deal with various
memory models. The two new collectors are built on simple design
ideas, and are less complicated than STOPLESS. However, the sim-
plification comes with a cost and we discuss and study the trade-
offs in this paper. Algorithms for real-time concurrent collection
are only starting to appear and we believe that proposing more al-
gorithmic approaches and studying their relative performances and
real-time guarantees is important for our understanding of real-time
garbage collection.

CHICKEN is based on the optimistic assumption that the chances
that the program will actually modify an object at the same time
that the collector is moving it are small. CHICKEN will work per-
fectly fine when such a race does not happen and CHICKEN will be
able to abort a move of an object gracefully when a race does hap-
pen. The details of how the CHICKEN collector gracefully aborts a
move are somewhat more complicated, and are explained in Sec. 4.
While preserving lock-freedom, we maintain the invariant that all
threads agree on whether an object is copied or not, and all threads
always use the correct copy of the object to load and store values.

CLOVER uses a different approach. It does not block data races
between the collector and the program threads. Instead it builds on
an observation from probability theory. If one chooses a value v
uniformly at random from a space of 2` values V , and if no infor-
mation on this value is provided to a program P, then the probability
that the program will store this value at any given store execution
is 2−`. CLOVER starts by tossing coins to produce a random value.
It then assumes that the program will not store this value during its
execution, and thus, this value can be used as a “marker” to mark a
field as obsolete after it has been copied. CLOVER verifies that the
program indeed adheres to this assumption by putting a guard in a
write barrier. In case the program does write the forbidden value,
a lock needs to be used, and lock-freedom cannot be guaranteed
any more. Note that correctness is always guaranteed, it is only
lock-freedom that is lost with an extremely small probability. We
discuss this strategy and motivate the use of (well-founded) proba-
bilistic assumptions for memory management and systems at large
in Sec. 2.

We discuss, motivate, and compare the two new concurrent
real-time garbage collector algorithms to each other and to the
STOPLESS collector. In addition, we have implemented all three
algorithms on Bartok and we provide measurements to demonstrate
and compare their performance.

The contributions in this paper include:

1. Presentation of the CHICKEN concurrent real-time collector.
2. Presentation of the CLOVER concurrent real-time collector.
3. Introduction of rigorous probabilistic assumptions into systems.
4. Comparison of the two algorithms to each other and to the

STOPLESS collector of Pizlo et al.
5. Implementation and performance study of all three collectors

(CHICKEN, CLOVER, and STOPLESS).

We remark that although our algorithms can be used with hard real-
time systems, our implementation does not currently support hard
real-time. A discussion on the limitations of the implementation
appears in Section 8.

Organization. In Section 2 we motivate and discuss the ap-
proaches set forth by CLOVER and CHICKEN. In Section 4, we
present the CHICKEN collector and in Section 5 we present the
CLOVER collector. We compare these two collector with the STO-

PLESS collector in Section 7. The implementation details and mea-
surements report appear in Sections 8 and 9. We discuss related
work in Section 10 and conclude in Section 11.

2. Real-Time, Failure Probabilities, and Aborting
a Copy

Lest men suspect your tale untrue, Keep probability in view.
John Gay

Real-time guarantees seem to be at odds with aborting or fail-
ure probabilities. When handling real-time tasks, one expects the
system to always be robust and predictable in the presence of worst
case scenarios. However, this view of real-time systems is miscon-
ceiving. A computer system cannot provide absolute guarantees.
The major goal of a real-time system can be viewed as attempting
to bring down the failure probability to an extremely low level. To
realize that problems can always happen, one can envision the list
of problems that cannot be avoided. For example, the possibility
of a bug in the software, of a hardware failure, of memory corrup-
tion, maybe one should also consider unexpected interrupts, page-
faults, or just an odd behavior of the cache misses that may prevent
a garbage collector from finishing on time. The list of inherently
bad events goes on, but all these possible causes of failures happen
with an extremely small probability. Typically, these bad cases are
dismissed without a rigorous computation of the small error proba-
bilities by which they occur. The reason for this lack of rigor is that
it is not clear what the distribution space is.

CLOVER has a small probability of failing to support lock-
freedom. However, this failure probability can be well defined and
computed (or bounded). The actual distribution space and error
probability computation will be specified in Section 5, and they
can be made quite small with a proper design parameters.

A philosophical question that rises is what probability is small
enough to be acceptable in real-time systems. Such a question
cannot be scientifically answered, but consider, for example, car
accident statistics. Up-to-date statistics show that out of the 301
million people living in the U.S. in July 2007, about 115 die every
day in vehicle crashes. Assuming that the accidents are uniformly
distributed, any specific person dies every day with probability
higher than 1/300000 from a car crash. A hardware failure is much
more likely. So is it enough that the program meets its deadlines
with such probability? CLOVER fails to remain lock-free with a
much smaller probability of around 10−20. Arguably, this failure
probability is negligible for all practical purposes. It is important
to note that the failure probability is bounded independently of
the input or of any other program run characteristics. Thus, for
any possible run, and even a worst case one, only the coin tosses
determine whether lock-freedom cannot be guaranteed, and as long
as these coin tosses are independent of the rest of the run, the low
error probability is guaranteed.

Aborting an object copy with CHICKEN is not as clean and
rigorously analyzable as giving up lock-freedom in CLOVER. For
CHICKEN lock-freedom is always guaranteed, but it is not guaran-
teed that all objects marked for compaction will indeed be moved.
With very small probability CHICKEN will abort copying one or
more of the objects. The problem is that such aborts may foil at-
tempts to reduce fragmentation. The probability of aborting an ob-
ject relocation cannot be rigorously computed, much like the proba-
bility of other system hazards that may occur. The probability of ac-
tually aborting an object replacement with CHICKEN is extremely
small as will be clear from the description of the algorithm in Sec-
tion 4.
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3. Common Design Principles
Several design features are common to all collectors discussed in
this paper, i.e., STOPLESS, CHICKEN, and CLOVER. We have at-
tempted to use a shared implementation of all common features so
that the comparison becomes as accurate as possible. The different
parts in the implementation are exactly those in which the algo-
rithms differ between the three collectors.

All collectors run concurrently with the program threads on a
separate processor (or core). The description focuses on the use
of two collector threads, one for compaction and one for the mark-
sweep reclamation. The framework can be easily extended into run-
ning additional concurrent collector threads by adopting a work dis-
tribution mechanism that is known in the art, such as the one in [4].
The three compacting collectors discussed in this paper are em-
barrassingly parallel because each object is copied independently
of any other object. Such an extension was not required with the
machines we used for our measurements (8 cores), but will be re-
quired for scalability with a larger number of cores. We assume
in this work that the collectors operate on spare processors. Thus,
complicated scheduling issues that often appear with uniprocessors
do not arise. The only question that needs to be addressed is how
many collectors must be run concurrently, so that they can always
cope with the program threads’ allocation pace. This number can
be computed using formulas developed in prior art—see [24, 2].

All three collectors employ the same efficient lock-free on-the-
fly mark-sweep collector to reclaim objects concurrently. It is the
same as was used for STOPLESS [25]. All three collectors use par-
tial compaction infrequently to reduce fragmentation. The main al-
gorithmic challenge is in designing the real-time concurrent com-
pacting collectors. It is also the compaction that introduces the
highest overheads. Our study concentrates on three different com-
paction mechanisms. The objects to be moved can be selected using
any criteria on fragmentation that one may envision. In previous
work, objects have been evacuated out of scarcely populated pages,
and we follow that idea in our implementation. The objects to be
moved are marked for moving before the concurrent compaction
begins. We denote the original copy of the object the from-space
copy and we denote by to-space the copied object in the new loca-
tion.

A soft handshake (similar to [25]) is used to communicate the
phases of the collector to the program threads and make them use
the appropriate memory barriers for the phase. The path specializa-
tion method that was used with STOPLESS is also employed with
the two new collectors to reduce the overhead of the read barri-
ers substantially and allow proper comparison. A new method for
incremental lock-free stack scanning, that reduces the pauses in-
curred by stack scanning, has been developed for the new collectors
but its description is beyond the scope of this paper. Other compo-
nents such as arraylets [8] are known in the art and outside the focus
of this paper.

All three collectors support lock-freedom. They allow the pro-
gram threads to cooperate via shared memory; they never use locks;
and they never make a program thread wait for the collector more
than a small and bounded number of steps.

Loosely speaking, lock-freedom ensures that if some of the
threads are held up and delayed for any reason, the rest of the
threads can still make progress. The requirement is that there ex-
ists a bound ` such that after the program threads make ` steps
collectively, one of them must make progress. Lock-freedom elim-
inates the danger of deadlocks and livelocks, it provides immunity
to other threads’ failures, it ensures robust performance even when
faced with arbitrary thread delays, and it prevents priority inver-
sion (in which a higher priority thread waits for a lock held by a
lower priority thread). And last but not least, it allows scalable per-
formance due to fine-grained synchronization. Wait-freedom is an

even stronger guarantee ensuring that any thread that makes ` steps,
makes progress.

We next move to describing the two new methods for real-
time concurrent compaction of the heap. We will also overview the
existing STOPLESS collector that we compare to.

4. The CHICKEN Collector
Both optimists and pessimists contribute to our society. The
optimist invents the airplane and the pessimist the para-
chute. Gil Stern

4.1 An Overview
CHICKEN allows both the collector and the program threads to
exploit an optimistic assumption about program behavior to gain
raw speed as well as real-time guarantees that are unprecedented
for a concurrent copying collector. The optimistic assumption is
that the program threads are unlikely to modify objects marked
for copying during the brief window during which those objects
are copied; if the assumption does not hold, copying is aborted
for the affected objects. With this assumption in hand, we design
an algorithm in which reading and writing are cheap wait free
operations, while the algorithm responsible for performing the copy
is allowed to be mostly impervious to concurrent program activity.

4.2 Main Design Points
The main design points of the algorithm follow.

Objects are copied as a whole. In contrast to STOPLESS’ mov-
ing of objects field-by-field from the original to the new location,
CHICKEN completely copies an object to its new location and then
lets all program threads switch to working on the new location.
(The only exception is arrays, for which each arraylet is copied in-
dependently.) Thus, either the from-space object contains the most
up-to-date state, or the to-space does. This property is useful for
read performance, as it allows field reads to be implemented using
a simple wait-free Brooks-style barrier, rather than the heavier bar-
riers of STOPLESS or CLOVER. These other collectors require reads
to do per-field checks to see where the latest version of a field is—
such a check in practice requires more indirection than the Brooks
barrier.

Writing is a wait-free operation. When a program thread is about
to write to an object, it asserts that either the object is fully copied
(in which case it can write to to-space) or it is not tagged for copy-
ing at all (in which case it can write to from-space). If the object
is in neither state, then our optimistic assumption did not hold. In
this special case, copying is aborted for that object. Aborting is im-
plemented using a compare-and-swap, which can only fail if some
other thread already aborted the copying process for this object,
or if the copier completed copying. Thus, the write barrier always
completes in a constant number of steps, making it wait-free.

A soft-handshake occurs before copying starts. Each object that
the collector means to copy is tagged before the soft-handshake
is initiated. The collector does not proceed with copying until all
threads acknowledge the initiation of a compaction phase. This has
an important implication. After successfully aborting object copy-
ing, a program thread may assume that the object will not be copied
until the next compaction runs; furthermore, a new compaction
will not start until the program thread acknowledges a handshake.
Thus, writes to the from-space location of an object, whose copying
process was aborted, are safe.

The copying process is wait-free. Objects are flipped from from-
space to to-space individually. When the copier has copied all fields
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T read<T>(object o, int offset) {
return *(o->header.forward + offset);

}

Figure 1. CHICKEN read barrier.

void write<T>(object o, int offset, T value) {
if (o->header.tagged)

// slow path
CAS(o->header,

Header(forward=o, tagged=true) →
Header(forward=o, tagged=false));

// fast path
*(o->header.forward + offset) = value;

}

Figure 2. CHICKEN write barrier.

void copy(object o) {
o->header.tagged = true;
InitiateHandshake(); WaitForAllThreads();
object copy = AllocToSpace(sizeof(o));
memcpy(copy, o, sizeof(o));
if (CAS(o->header,

Header(forward=o, tagged=true) →
Header(forward=copy, tagged=false)))

Fixup();
}

Figure 3. CHICKEN copying algorithm. For clarity of presentation, we
show a simplified copying algorithm, which only copies one object. In
practical implementations, this algorithm would be extended to copy as
many objects as required.

of an object to to-space, it asserts that the object is still tagged; if so,
the object is “flipped” by installing a forwarding pointer in from-
space that refers to to-space. This assert-and-flip is implemented
using a compare-and-swap instruction on the same word that holds
the tag. The assertion fails (that is, the object is no longer tagged)
only if the copying is aborted by some program thread. In this case,
the to-space copy is discarded. Thus—if a program thread writes to
an object before the copier flips it, it clears the tag and the object is
not copied; otherwise the object is copied and the program threads
write to and read from to-space thereafter.

To summarize, CHICKEN requires only a Brooks-style read
barrier and a wait-free “aborting” write barrier that in the fast path
only requires a read operation and a branch followed by the original
write operation. The sections that follow provide additional details
about the algorithm: Section 4.3 describes the object model and
Section 4.4 specifies the details of the algorithms used for reading,
writing, and copying.

4.3 The Object Model
CHICKEN requires that one pointer-sized word be added to each
object’s header, as shown in Fig. 4(a). This word is used for a
forwarding pointer (to facilitate a Brooks-style read barrier) and
a tagged bit. Objects are always allocated with the forwarding
pointer referring to the object itself, and the tagged bit being set to
zero—indicating that the object is not tagged for copying. The first

step to copying is to toggle the tagged bit, as shown in Fig. 4(b).
Copying completes with the tagged bit being toggled back and the
forwarding pointer being made to refer to the to-space object copy,
as seen in see Fig. 4(c).

4.4 CHICKEN Pseudocode
For the mutator, CHICKEN is designed to allow high-speed heap
accesses even during concurrent copying activity. Meanwhile,
CHICKEN copyies the contents of the object into to-space. Fig. 1
shows the read barrier. Note that this is a standard Brooks-style read
barrier; the only possible source of additional overhead is masking
off the tagged bit.

Fig. 2 shows the write barrier. The write barrier ensures that the
mutator only writes to the object if the object is either not tagged
for copying, or it is already fully copied. As discussed before, this
brings up a possible race between the collector thread that attempts
to copy the object, and the program thread that wants to mark the
original version of the object unmoveable before modifying it. This
race is settled by a CAS operation on the word that contains the
forwarding pointer and the tag bit. The copier prepares a copy of
the object concurrently, in the hope that no thread will modify it
during the creation of the replica. When the new copy is ready,
the copier performs a CAS to atomically change the self-pointer
into a forwarding pointer and clear the tag bit simultaneously.
Atomicity is crucial, because at the same time, the program thread
may attempt to perform a CAS on the same word if it is about to
modify a field in the object. The write barrier in Fig. 2 specifies
the action to be taken with each write during the moving phase.
If the tag bit is clear, then the object is either already copied or is
not meant to be copied at all. In that case, no race is expected and
the forwarding pointer can be used to access the relevant object
and field. Otherwise, the object is about to be moved and the
program thread needs to mark it unmoveable by clearing the tag
bit and keeping the self-pointer. Note that this modification of the
header word must be executed with a CAS. Indeed, a simple store
will mark the correct tag and pointer, but it may occur after the
copier has executed its CAS, and other threads may be already
using the new copy. The CAS makes sure that the header word still
contains a self-pointer and a set tagged bit while changing it into the
unmoveable value. After executing the CAS, the program thread
does not care if the CAS execution was successful, or the copier
has modified the header word earlier to point to the new object, or
another program thread has marked the object unmoveable. In all
these cases, the pointer in the header properly references the object
copy that should be accessed and that will not be moved during the
current collection cycle.

In the explanation above, we assumed a strong CAS, i.e., one
that only fails if a concurrent execution of a CAS on the same word
succeeds. Such a CAS is provided by the cmpxchg instruction on
x86 as well as a method in both the C# and Java 1.5 standard
libraries. It can be easily emulated using either LL/SC or a weak
CAS on platforms that do not support strong CAS natively.

On the fast path, this barrier requires a load (to load the header
word), a branch (to check that the tagged bit is not set), and the ac-
tual write operation. On the slow path, an interlocked compare-and-
swap operation is required. It is interesting to note that the branch
that guards the CAS is strictly a throughput optimization—the CAS
already performs the same check as the branch; as such it may be
worthwhile for implementors interested more in predictability than
throughput to omit the branch. Even on the slow path, both reading
and writing are wait-free operations.

Application compare-and-swap operations are supported by a
designated CAS barrier that extends the standard write barrier. For
CAS operations that involve primitive types, the store at the end
of the write barrier simply needs to be replaced with the CAS
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Figure 4. CHICKEN object states. On the left, (a) illustrates the neutral state of an object. In (b) we show the object being copied. Finally, (c) shows the
object after copying completes.

itself. CAS operations that deal with object pointers are slightly
complicated by the need to redefine equality. Indeed, STOPLESS,
CLOVER, and CHICKEN all have equality barriers that redefine
a==b such that it returns true even if a is a from-space pointer and
b is a to-space pointer to the same object (or vise-versa). CAS on
objects must be redefined in a similar manner, resulting in a lock-
free, rather than wait-free CAS implementation.

Copying under CHICKEN is shown in Figure 3. For simplicity
of presentation we present the code for copying a single object and
we discuss the extension to multiple objects later. The first step of
copying is to tag the object we wish to copy. Next we initiate a soft
handshake and wait for all threads to acknowledge—this ensures
that no write barriers that observed the object as being untagged be-
fore copy() began end up performing the write while the object’s
contents are being copied. Once all threads acknowledge the hand-
shake, the to-space copy is allocated and the contents are copied
using a regular memcpy operation. Once this completes the object
is flipped by asserting that it is still tagged, and if so, forwarding it
to the to-space copy. If the flip is successful, we ask the collector
to “fixup” the heap by replacing any references to the from-space
object with references to the to-space copy.

Extending to multiple objects presents a trade-off. The simplest
extension is to perform the operation described in Figure 3 for each
copied object. However, this implies a handshake per object, which
delays the collector and creates an additional overhead for the pro-
gram threads. (Regardless, the fixup should be invoked only once
between compaction cycles.) The other extreme is to run a loop to
tag all objects, then execute a single handshake, and then execute
all object copying. This extreme only requires one handshake and
is a simple and reasonable choice, which we have used in our im-
plementation. However, this choice extends the window of time in
which aborts can happen. In between the two extremes, one can run
a handshake per copying of a predetermined space quota. For ex-
ample, one can tag objects for an accumulated size of s kilobytes,
perform a handshake and relocate these objects. Then repeat for the
next s kilobytes and so forth.

4.5 Heap Fixup
After compaction finishes, the mutator will only access to-space
but from-space pointers may still exist—both in the heap and in
the roots. For the collector to be able to safely discard from-space
objects, all from-space pointers must be replaced by to-space point-
ers. Our strategy is to leverage the existing mark algorithm. After
compaction, we trigger the collector to run a mark-sweep cycle;
during the mark cycle all pointers in the roots and in the heap are
replaced by their to-space variants. The sweep phase then reclaims
all from-space memory.

Just as during other collector activities, there is the risk of un-
wanted behavior due to concurrent mutator activity. In this case,
while heap fixup is running, the mutator may read as-yet un-
forwarded from-space references from the heap. We have two
solutions—either rerun root fixup after heap fixup, or have the

object read<object>(object o, int offset) {
object result = *(o->header.forward + offset);
if (result!=null) result=result->header.forward;
return result;

}

Figure 5. CHICKEN eager read barrier.

object tracePtr(object o, int offset) {
while (true) {

object oldPtr = *(o + offset);
object newPtr = oldPtr->header.forward;
if (oldPtr == newPtr) return oldPtr;
if (CAS(o + offset, oldPtr → newPtr))

return newPtr;
}}

Figure 6. Function used by collector to access a pointer in an object
during tracing. Pointers are updated if they refer to from-space using a CAS
loop that avoids losing concurrent mutator writes.

mutator use an eager read barrier for reads of object references. In
an eager read barrier, references are forwarded before being placed
in a local variable. Note that fixing up a pointer is executed with
a CAS to make sure that the fix-up does not race with the mutator
on changing a pointer field. Such a race may result in a inappropri-
ate fix of a different pointer than the one attempted by the fix-up
procedure.

Fig. 5 shows an example CHICKEN read barrier specialized for
object references, in which both the object being loaded from as
well as the value loaded are forwarded.

Mutator writes can likewise interfere with heap fixup: if the mu-
tator writes a new value into a field as the collector is installing an
updated pointer in that field, there is the risk that the mutator’s write
will be lost. Our implementation avoids this problem by having
the collector update pointers using a simple CAS-based transaction
that ensures that an updated pointer can only be installed if doing
so does not change the logical value of the pointer field. The algo-
rithm used by our collector to trace pointers during the fixup phase
is shown in Fig. 6.

4.6 CHICKEN Summary
CHICKEN is designed for speed. Reading and writing do not require
synchronization operations like compare-and-swap, except in the
write slow path. Both reads and writes are wait-free in the worst
case. Application compare-and-swap operations are lock-free. The
copier itself is light-weight, fast, and highly parallelizable: the
copying task(s) can safely ignore concurrent mutator activity right
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up until the point where the copy operation is “committed” by
flipping the object. The flip is a wait-free operation. However, this
high performance comes at a cost: there is no guarantee that a
particular object selected for relocation will actually be relocated.
Indeed, it is possible for some “hot” objects to not be relocated in
any copying cycle.

5. TheCLOVER Collector
What does chance ever do for us? William Paley

In this section we introduce theCLOVER collector. This collec-
tor builds on the fact that random arbitrary events seldom happen
and furthermore, we can analyze the probability of things going
wrong. InCLOVER, if things go wrong, at worst a program thread
will block—but the program will still behave correctly.CLOVER
fails to support lock-freedom with negligible probability. We stress
that this negligible probability depends on random coin tosses made
by the collector during the execution and not on the input or any
other property of the execution. Namely, there is no “bad input” or
“bad execution” that cannot be handled. The advantage ofCLOVER
over CHICKEN is that it always relocates objects marked for relo-
cation; relocation is never aborted. The advantage ofCLOVER over
STOPLESSis that it is simpler and has a lower time and space over-
head. The drawback ofCLOVER is that it may fail to support lock-
freedom, although such failure occurs with negligible probability.

5.1 An Overview

The main challenge for real-time concurrent collectors is that they
need to relocate objects while the program threads are accessing
them. At some point, the program threads should flip from access-
ing the old copy of the field into accessing the new copy. It is not
acceptable to stop the threads simultaneously to make sure they
all switch their target memory accesses simultaneously. So some
means must be used to ensure that all threads switch to working
with the new version simultaneously. If not properly handled, one
thread will write to the old version while another reads from the
new version and the memory model will not be properly kept. This
problem was solved in theCHICKEN design by not allowing any
access to an object while two copies of it exist in the system. Any
such access rendered the new copy unusable.STOPLESSused a spe-
cial intermediate copy for each relocated object. The intermediate
object was larger than the original object and additional fields were
used to synchronize all accesses to all three object copies (original,
intermediate, and new version) during the relocation.

The basic idea undelying theCLOVER collector is to toss a
random valueα and assume the program is never going to write
this value to the heap.1 The chances that a random value of 64 bits
will be ever written to the heap by an application is negligible, as
will be discussed later. Now thatCLOVER holds this magical value,
it can use it to block accesses to a field of the original object. When
CLOVER wants to switch the accesses of all threads from the old
version of a field to a new version of it, it installs anα into the
old field. This is done atomically using a CAS instruction. When
a program thread sees anα in a field, it knows that this field is
obsolete and its value should be accessed in the object’s to-space
version.

What remains is to handle the unfortunate case that the appli-
cation does write anα unexpectedly. As this event happens with

1 The α value may in practice be selected on a per-field, per-object, per-
phase, or per-execution basis. In our implementation we choose it on a
per-execution basis, which is the straightforward choice. The difference
between the alternatives is only relevant for an actively adversarial program
that attempts to break the system and determineα. We do not insist on
real-time support for such attackers.

such low probability, a simple solution is to just ignore it. The pro-
gram may fail to run correctly, but the probability of this failure is
smaller than hardware corruption, which we normally ignore. We
choose a more aesthetic solution in which the write-barrier guards
against this event. Whenever the program thread tries to write the
randomly selectedα value, the barrier blocks the application until
the copying phase terminates. Thus, correctness is always guaran-
teed, but the lock-freedom guarantee may be lost with negligible
probability. The details are provided below.

5.2 Supporting Lock-Freedom with High Probability

Consider the following hypothetical system in which each heap
field has a special value—which we will callα—reserved for a
concurrent copying collector. The program is guaranteed to never
useα. Instead, ifα is stored into a field it means that the field has
been relocated to the new to-space copy of the object. Given this
simplifying assumption, it is easy to design a non-blocking copying
concurrent collector.

void copyField<T>(
object from, int offset) {

while (true) {
T value = *(from + offset);
*(from->forward + offset) = value;
if (CAS(from + offset, value → α)) break;

}}
T read<T>(object o, int offset) {

T value = *(o + offset);
if (value == α) return *(o->forward + offset);
else return value;

}
void write<T>(object o, int offset, T value) {

if (value == α)
WaitUntilCopyingEnds();

while (true) {
T old = *(o + offset);
if (old == α) {

*(o->forward + offset) = value;
break;

} else if (CAS(o + offset, old → value))
break;

}}

Figure 7. Pseudo-code forCLOVER.

The problem is that systems do not normally provide such
guarantees, unless special hardware is designed (e.g., to contain an
extra bit per field for this purpose). For heap pointers field, one can
easily pick anα that is never used2, and probably also for IEE 754
floating point values3. But this will not work for integers in most
modern languages—in C# and Java, an “int” must be 32-bit, and a
“long” must be 64-bit; there is no way to make the program avoid
any specific value.

CLOVER offers an innovative solution for obtaining such an
α by employing randomness—it picks a random number to serve
as α. CLOVER will atomically install α into an original field to

2 Because of alignment rules, a valid heap pointer is guaranteed to be a
multiple of 4 on most platforms—soα could just be any pointer-width
integer that is not a multiple of 4.
3 “NaN” can be represented using any bit sequence in which thefraction is
non-zero. Thus, if we have the power to pick a single representation of NaN
in the heap, we can use any of the other representations asα).
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signify the relocation of this field into to-space. Thus, the maximum
possible length ofα, N, can be set to the maximum number of
contiguous bits that an be set atomically by a CAS on the target
architecture. Becauseα is picked at random, it is unlikely that
the mutator will useα for its own purposes; for example, on
the modernx64 architecture,N = 128; thus, the probability of a
program thread writing the sameα thatCLOVER picks in a memory
write is 2−128. The probability of this event occurring is equal to
tossing a biased coin 128 times independently and seeing it land
on its face each and every time. Just to appreciate the scarity of
this event, consider running this experiment again and again every
nanosecond since the beginning of the universe (the big bang) until
now. We would still have a tiny probability of about2−40 to actually
observe all coins facing the same predetermined side 128 times in
one of these experiments. For systems supporting a CAS of 64 bits
only, we would get a probability of2−64, which is still amazingly
small, and significantly smaller than any known estimate on the
probability of encountering a hardware failure.

One important fact from probability theory should be high-
lighted. If the coins are tossed uniformly and independently at ran-
dom, then an execution will write anα with probability exactly
2−128 at each memory write, no matter how the program behaves.
This is correct even for malicious programs, as long as they are
given no information aboutα, i.e.,α is tossed independently of the
program execution. Informally, if the execution is independent of
the choice ofα, then there is no way any memory write can hitα
with probability that exceeds2−128.

The pseudo code ofCLOVER is shown in Figure 7. The copying
is described for a given object to relocate and a given address for
relocation. All to-space locations are always pre-initialized with
αs. The copier copies the value of the field into the to-space area
and then installs anα into the original location. Upon failure (due
to program use of this field) the relocation is retried. Note that
although the program never has to wait for the collector (except for
a small bounded number of steps), the collector may be delayed by
program activity. Conditions can be paused on program execution
and scheduler fairness to guarantee collector progress. A more
algorithmic (and involved) way to deal with progress guarantee
exists, but is omitted from this short version of the paper. The write
barrier detects when the user is about to store anα and blocks
him from doing so until copying completes. All writes are executed
using CASes during the copying phase.

The barriers presented thus far are heavy and slow. Reading
requires a read and a branch in the best case. Writing requires two
branches (one to check that we’re not writing anα and another
to check if the from-space containsα), a read, and a write in the
best case. Such barriers will pose a large throughput overhead in
practice. To solve this drawback, we employ barriers that can be
disabled when they are not needed—for example during phases of
execution when there is no concurrent copying activity.

Similarly toSTOPLESSandCHICKEN, soft handshakes are used
to avoid stopping all the program threads simultaneously when
switching between the three different phases. However, when using
soft handshakes, the operation of parallel program threads is not
always fully synchronized. Namely, during a transition from one
“phase” to another, some threads may start operating in the new
phase while the remaining threads are still operating in the previous
phase. Special care is taken to make sure that the barriers are
properly coordinating program and collector activity in spite of
this partial synchronization. The fullCLOVER algorithm proceeds
through three phases:idle, prep, copy. Each phase has slightly
different barriers:

• Barriers are disabled in theidle phase.

• Theprepphase acts as a buffer betweenidle andcopy. In prep
we use a write barrier that is designed for compatibity with both
the idle and thecopyphases.

• Thecopyphase uses the barriers presented in Figure 7.

See Figure 8 for theprep phase write barrier. If from-space
contains anα, the prep write barrier cannot write to to-space—
since if other threads are still in theidle phase, the write would
be invisible to them. Thus, if from-space containsα, the modified
write barrier checks if the system has already progressed into the
copyphase; if so, it proceeds using the usual logic; otherwise, it
blocks until the transition into thecopyphase is complete. Note that
the code will only wait for thecopyphase if from-space contained
a userα value—since if theα was installed by the collector, the
current phase would already becopy.

void write<T>(object o, int offset, T value) {
if (value == α)

WaitUntilCopyingEnds();
while (true) {

T old = *(o + offset);
if (old == α) {

HandShakeCooperate();
if (phase != copy ) WaitUntilCopyPhase();
restart write barrier in copy phase;

} else if (CAS(o + offset, old → value))
break;

}}

Figure 8. CLOVER write barrier used in the prepphase.

6. An Overview overSTOPLESS

STOPLESS[25] was the first practical concurrent compactor to sup-
port fine-grained synchronization.STOPLESS is not designed to
rely on chance—instead it works hard to ensure that all objects
that were tagged for copying are in fact copied, and that no mu-
tator thread will ever block on a heap access. The main insight
of STOPLESS is the use of a temporary, expanded object model
to store copy status information—see Fig. 9. Copying is performed
by first copying between the from-space object and the expanded
object, and then by copying out of the expanded object and into the
to-space object. During each phase of copying, either the source
or destination has an adjacent status field; this allows the use of a
double-word compare-and-swap to both access the data in the ex-
panded object field and assert its status. As inCLOVER, phasing is
used to carefully enable and disable barriers.

STOPLESSdelivers high throughput when there is no copying
activity, and allows the mutator threads to keep running without
pauses while copying activity is on-going. Accessing the heap
is deterministically lock-free, but requires the use of heavy and
complicated barriers. Although the program never needs to wait
for the collector, theSTOPLESScopier does not have a progress
guarantee. In a small probability worst-case race scenario, repeated
writes to a field in the expanded object may cause the copier to
be postponed indefinitely.STOPLESSworks hard to ensure that all
objects get copied, but under pathological cases (such as multiple
simultaneous mutator writes to the same field during entry into the
compaction phase) an object may not get copied.

7. Properties of the Three Collectors
We have presentedCHICKEN and CLOVER; as well, we have re-
viewed the basic design ofSTOPLESS. These three concurrent com-

39



� � � � � � � � � 	

 � � 	 � 

� � � � � � � 	 � �

 � � 	 � 

� � � � � � � 	

 � � 	 � 


 � � 	 �  � � 	 � �

� � � � �  �  � �
� � 	 � �

Figure 9. STOPLESS expanded object.

pacting algorithms provide different timeliness and progress guar-
antees. Differences exist in the way that the mutator accesses the
heap, the handling of object copy aborting, and the termination of
the compaction process. Let us discuss these differences explicitly
before presenting measurements.

Heap access. All three algorithms aim to provide lock-free heap
access, but subtle differences exist in how strong this guarantee is,
and how much work the mutator has to do to safely access the heap.
CHICKEN is by far the most mutator-friendly algorithm—all heap
accesses are wait-free with the exception of compare-and-swap on
object fields, which is lock-free. On the other hand, CLOVER and
STOPLESS can at best only provide lock-free writes, and reads re-
quire branching. In the worst case, CLOVER will perform the worst
of these collectors: a heap write may be stalled until compaction
completes—however this will only happen with a very low proba-
bility. CLOVER’s heap access algorithms are simpler to implement
than the ones in STOPLESS, and can achieve better performance in
practice.

Aborting. CLOVER never aborts object copying except if it is
specifically requested by the user through a pin operation, for ex-
ample using the C# fixed statement. STOPLESS may abort ob-
ject copying in the rare case that multiple mutator threads write
to the same field simultaneously during entry into the compaction
phase. CHICKEN aborts object copying very eagerly—no writes to
the heap are allowed unless the object is not copied at all or fully
copied, with aborting used to guarantee the former condition if the
latter does not hold.

Termination. CHICKEN’s compaction phase is guaranteed to
complete, but it may not copy all objects. CLOVER does not have
a termination guarantee for the simple version presented above.
CLOVERhas a more complex version that can provide a progress
guarantee, however, it is outside the scope of this conference sub-
mission. This version will guarantee termination, while also guar-
anteeing that all objects are copied. STOPLESS does not have a
termination guarantee.

It is noteworthy how the algorithms do not differ. They all
provide lock-free object allocation, they all support fine-grained
synchronization, and all require only minimal changes to a mark-
sweep collector to be fully integrated with it. As well, all three
collectors give the mutator a logically higher priority than the
collector in the case of concurrent accesses to the same data: the
collector cannot cause the mutator to spend unbounded time in a
barrier.

8. Implementation
To compare STOPLESS, CHICKEN, and CLOVER, we have imple-
mented them all in the Bartok system. The Bartok system consists
of a compiler and a runtime system. The compiler can be config-
ured to insert different kinds of read- and write-barriers in the gen-
erated code. Similarly, the runtime system can be configured to uti-
lize different kinds of garbage collector algorithms.

The compiler performs ahead-of-time compilation from the CIL
byte-code format [15] to stand-alone executable files. For the pur-
poses of evaluation, the system is being used in a configuration that
generates Intel x86 machine code programs.

All three concurrent real-time collectors have been configured
to use the same concurrent mark-sweep collector as in [25]. The
mark-sweep collector follows ideas from [12, 11, 13], where the
reference write-barrier ensures that an unmarked (white) object is
marked gray when a reference to the object is overwritten. Alloca-
tion is also lock free except when the user did not correctly config-
ure the collector for a given application’s allocation rate.

All three concurrent copying collectors share a common mech-
anism for choosing the set of objects to relocate. For the purposes
of evaluating the relative performance of the different collectors,
a very simple scheme that is often used with partially compacting
collectors has been adopted. Entire memory pages that fit evacua-
tion criteria—less than 50% occupancy—are tagged. At most 10%
of all in-use memory pages are chosen for relocation. Compaction
is not necessarily invoked in every garbage collection cycle; for
evaluation purposes, we invoke compaction every 5 garbage col-
lection cycles.

Instead of operating within a pre-determined artificial heap size
limit, the garbage collectors are permitted to use as much mem-
ory as they deem necessary. Garbage collection cycles are started
according to an adaptive triggering mechanism that is based upon
current heap size and allocation rate. For evaluation purposes, the
concurrent copying collectors all use the same triggering mecha-
nism.

The read- and write-barriers employed by the concurrent collec-
tors have different behavior according to which phase the garbage
collector is in. To reduce the overhead of the barriers in the presence
of this phase behavior, an optimization called path-specialization is
used for all the garbage collectors. Path-specialization creates ver-
sions of the code that are specialized for being executed in specific
subsets of phases. Code is inserted to ensure that control flow is
transferred to the appropriate version of the code. Each collector
has a set of barrier methods that are used when the object reloca-
tion mechanism is idle and another set of barrier methods for when
the object relocation mechanism is active.

While our current implementation features good real-time re-
sponsiveness on the benchmarks that are available to us, it should
be noted that our current system does not provably meet hard real-
time guarantees. This is in part because our implementation is lack-
ing certain features known to be required for a fully robust real-time
garbage collector, and in part because we have not analyzed our
collectors’ performance to the extent that would be necessary to
classify them as hard real-time. In particular, we have not imple-
mented features such as arraylets, stacklets, or priority boosting.
Arraylets and stacklets allow for better bounds on large object al-
location and scanning of large stacks, respectively. Priority boost-
ing is needed to guarantee that threads reach safepoints in a timely
manner. If we knew how fast our collector performs all of its key
functions—marking, sweeping, and copying—then we could pro-
vide users with a formula for picking tuning parameters such that
the collector always keeps up. We leave these issues to future work.
In addition to all the above, strict hard real-time systems may re-
quire a verification of the garbage collection code, which is notori-
ously difficult to achieve, and poses some open problems.

9. Measurements
The test programs used for this evaluation are summarized in Ta-
ble 1. We translated the JBB program from Java into C#. In our
previous work [25], we used a different translation of JBB into C#,
which, according to the available porting notes, had several scalable
data structures replaced with non-scalable ones. Our new JBB port
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Benchmark Types Methods Instructions Objects Allocated KB Allocated Description
sat 24 260 19,332 8,161,270 171,764 SAT satisfiability program.
lcsc 1,268 6,080 403,976 8,202,479 426,729 A C# front end written in C#.
zing 155 1,088 23,356 12,889,118 928,609 A model-checking tool.
Bartok 1,272 8,987 297,498 434,401,361 11,339,320 The Bartok compiler.
go 362 447 145,803 17,904,648 714,042 The commonly seen Go playing program.
othello 7 20 843 640,647 15,809 The commonly seen Othello program.
xlisp 194 556 18,561 125,487,736 2,012,723 The commonly seen lisp implementation.
crafty 154 340 40,233 1,794,677 217,794 Crafty chess program translated to C#.
JBB 65 506 20,445 501,847,561 54,637,095 JBB ported to C#.

Table 1. Benchmark programs used for performance comparisons.
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Figure 10. Relative execution times for the non-JBB programs.
The execution times have been normalized to that of the concur-
rent base-line non-copying collector. Higher numbers mean slower
execution.
.

does not, to our knowledge, have this problem, as we were careful
to pick the best C# equivalents for the Java classes used by JBB.

All measurements have been performed on an Intel Supermicro
X7D88 dual x86 quad-core workstation running Microsoft Win-
dows Server 2003 R2 Enterprise x64 Edition at 2.66GHz with
16GB RAM.

We performed measurements for collector configurations where
the object relocation mechanism was activated every 5 garbage col-
lection cycles. For each non-JBB program, each configuration was
run once in sequence, and the sequence was repeated a total of 5
times. The JBB program was only run once for each configuration.
When error bars are present in graphs, they represent a 95% confi-
dence interval.

The memory barriers used by our collectors impose an overhead
on the test programs. To characterize this overhead, we measured
the throughput of the programs with the three different collectors
and compared it to the throughput of a system that reclaims garbage
using the base-line mark-sweep non-compacting concurrent collec-
tor. For the non-JBB programs, the relative execution time numbers
are shown in Figure 10. For the JBB program, the JBB transactions
per second for various numbers of warehouses under various col-
lectors are shown in Figure 11. Typically, the CLOVER collector
generally imposes less overhead than does the STOPLESS collec-
tor, and the CHICKEN collector imposes less overhead than do both
the STOPLESS and CLOVER collectors.
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Figure 11. Scalability of JBB for different collectors. Higher num-
bers mean more transactions per second, which indicates better per-
formance.

The STOPLESS, CHICKEN, and CLOVER collectors were all de-
signed to be able to support real-time applications that have re-
quirements of extremely short response times. In other words, the
collectors must exhibit extremely short pause times and allow ap-
plications to remain responsive during any and all garbage collec-
tion phases. To demonstrate this, we repeated the responsiveness
measurements of Pizlo et al. [25]. A test program fires events at
a rate of 108KHz (simulating the frequency of high quality audio
samples) and a computation must end before the next event fires.
The test was run with three different computation tasks and with
varying specified sizes. The IntCopy task copies a specified num-
ber of integer values in an array. The test attempts to copy 256, 128,
or 64 integer values. The RefCopy task copies a specified number
of reference values in an array, invoking the reference write barrier
of a collector. The RefStress task is similar to the RefCopy task,
but the program has another thread that repeatedly allocates (and
releases) a 400MB data structure involving over a million objects.

The measurement results for all three collectors as well as for
the non-copying base-line collector are shown in Table 2. As ex-
pected, the two new collectors CHICKEN and CLOVER perform bet-
ter than the previous STOPLESS collector. The non-copying collec-
tor is performing best as expected, but CHICKEN is able to consis-
tently handle the copying of 256 reference values at a frequency of
108KHz, even in the presence of high rate concurrent allocations.
The STOPLESS and CLOVER collectors are unable to consistently
complete this task at such high rate when concurrent stressing allo-
cations are run, because of their heavier barriers. However, they are
able to consistently complete the smaller task of copying 64 values.
The Windows Server operating system, on which we implemented
our collectors, is not a real-time operating system, and we ran our
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System Size Task Done Missed High
non-copy 256 IntCopy 99.997% 0.001% 115µs

RefCopy 99.996% 0.001% 47µs
IntStress 99.995% 0.002% 128µs
RefStress 99.991% 0.006% 67µs

STOPLESS 256 IntCopy 99.997% 0.001% 51µs
RefCopy 99.995% 0.002% 49µs
IntStress 5.357% 49.758% 134µs
RefStress 11.304% 53.861% 145µs

CLOVER 256 IntCopy 99.997% 0.001% 53µs
RefCopy 99.996% 0.002% 49µs
IntStress 25.766% 38.579% 95µs
RefStress 11.227% 62.448% 132µs

CHICKEN 256 IntCopy 99.997% 0.001% 67µs
RefCopy 99.994% 0.003% 56µs
IntStress 99.991% 0.003% 118µs
RefStress 99.978% 0.012% 117µs

STOPLESS 128 IntStress 4.777% 92.308% 68µs
RefStress 92.371% 7.072% 110µs

CLOVER 128 IntStress 46.280% 49.759% 92µs
RefStress 98.246% 1.589% 97µs

STOPLESS 64 IntStress 99.973% 0.015% 135µs
RefStress 99.980% 0.010% 108µs

CLOVER 64 IntStress 99.980% 0.011% 112µs
RefStress 99.969% 0.012% 99µs

Table 2. Indicators of overall responsiveness for various garbage
collectors for an event frequency of 108KHz. The IntCopy and
RefCopy tasks involve copying a number of integer and reference
values, respectively. The Stress versions of the tasks adds another
thread that repeatedly allocates and releases a 400MB data structure
involving over a million objects.

test on a Windows Server’s standard running environment. There-
fore a 100% on-time response should not be expected.

The program we used to measure responsiveness is roughly sim-
ilar to the HighFrequencyTask used to illustrate the responsiveness
of Eventrons [28]. Our test program tries to perform a larger (and
quantifiable) amount of work for each event than does the HighFre-
quencyTask. The task used by our test program can be considered
somewhat equivalent to a non-null Eventron. Figure 12 shows his-
tograms for the concurrent garbage collectors of the times between
when a timer indicated that the task should be commenced and
when the task was actually completed. The histogram shows that
concurrent collectors support programs that require extremely short
response times. The histogram has two peaks. One is at around 1
microseconds, which represents the time it takes to perform the
task when the garbage collector is in the idle phase. The other peak
is at 3 microseconds forCLOVER and 4 microseconds forSTOP-
LESSand represents the time it takes to perform the task when the
garbage collector is in a non-idle phase. ForCHICKEN the task is
completed at around 1 microsecond even in the non-idle phase.

It is not possible to make a direct comparison between the
results presented here and those from [28] because the tests are run
on different machines and different underlying operating systems.
However, the results of the garbage collected environment with our
compacting collectors seem at the very least comparable to the non-
garbage-collected environment in that paper. A support for events
that occur in such high frequency has not been reported in the
literature before.

The STOPLESSandCHICKEN collectors may both fail to relo-
cate objects that have been chosen for relocation. The failure to re-
locate an object may defeat the purpose of relocating any number of
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Figure 12. Histogram of how long after an event occurred the
scheduled task was completed. The task was to copy 64 reference
values in the presence of a competing allocating thread (RefStress).
The events were scheduled to occur every 9.26µs, which is roughly
equivalent to a frequency of 108KHz. Tasks may be started late due
to a previous task running late. Tasks not started prior to the start
of the next event were skipped.
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Figure 13. The rate of failure of theSTOPLESS and CHICKEN
collectors to relocate an object that has been chosen for relocation.
Smaller numbers are desirable.

other objects, and is therefore clearly undesirable. We measured the
failure rate of attempted object relocations for both theSTOPLESS
and CHICKEN collectors, where theCHICKEN collector is run in
a worst-case (most aborting) mode in which all objects are copied
with a single handshake. If a failure to relocate defeats the purpose
of relocating additional objects (for example if the collector desired
to have an entire page evacuated), then we count those additional
objects as also having failed. The results are shown in Figure 13.
As expected, theCHICKEN collector in its worst-case mode suffers
from a higher copying aborting rate than does theSTOPLESScol-
lector. Another cause of failure is the one forCLOVER in which
the program uses theα value that is randomly chosen byCLOVER.
We have not witnessed that happening in the runs we made, and
we do not expect such an event to happen during one’s lifetime. No
relevant measurements can be made.
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We also ran responsiveness experiments based on the JBB
benchmark. JBB transactions normally run for about a millisecond.
For our highly responsive collector, this does not pose a respon-
siveness challenge. It is noteworthy that this represents a different
class of real-time application than what we are targetting—we are
more interested in systems that deal with much shorter timescales.
On timescales that are substantially below a millisecond, collector
pauses such as those seen in previous real time garbage collection
work would be disastrous; it is exactly in those cases that we see
the greatest benefit to our approaches. When dealing with millisec-
ond timescales, collectors with sub-millisecond pauses are likely
to perform as well as—or even better than—the techniques we are
proposing, in much the same way that a well tuned stop-the-world
non-real-time collector will outperform any real time garbage col-
lector in a long timescale throughput test. Nevertheless, the results
in Figure 14 are interesting. Since different transactions run in
different phases of the collector run, they demonstrate various la-
tencies, showing the overhead of the slow paths of the barriers.
As expected, there are no transactions that take extremely long
to execute. CHICKEN—the fastest of our copying collectors—has
a very narrow distribution of transaction times with a maximum
of 1ms.4 CLOVER has a worst case of 3ms while STOPLESS is
a bit worse, with a worst case of 5ms. In Figure 14(a) we show
the performance of the stop-the-world mark-sweep collector for
comparison. Since JBB triggers many collections, there is a good
chance that some transactions will take significantly longer than
normal—in the worst case we see 70ms. In our tests of other stop-
the-world collectors—for example, our generational collector—we
saw results that were generally worse in the worst case than the
mark-sweep collector.

Compaction Measuring the effects of compaction is currently
difficult. The standard benchmarks run well without any com-
paction and therefore the non-copying method always does better.
Our experience with commercial long-running large applications
shows that fragmentation does develop over time and requires some
sort of compaction. However, no such benchmark is openly avail-
able for measurement publication. With real-time garbage collec-
tion, there is an apparent consensus that a worst-case fragmentation
problem must be handled. We believe this consensus is just and we
adhere to it by providing support for partial compaction upon need.
However, like previous publications, we cannot provide supporting
measurements to demonstrate the necessity of compaction for the
run. Compaction should be considered a mean that is seldom used,
and not one that must be used continuously with program run.

10. Related Work
An incremental copying collector with short pauses was first pro-
posed by Baker [3]. This collector was designed for a single
threaded program running on a uniprocessor. Baker used a work-
based scheduling of garbage-collection work which was later found
to consume a large fraction of the CPU time at some phases, lead-
ing the program to a practical halt. Henriksson and Roberts [16, 27]
and Bacon et al. [2] cut the overheads by using a Brook style [7]
read barrier. Bacon et al. proposed to use a time-based scheduling
of the collector, letting the collector and program thread alternate
usage of CPU time (on a uniprocessor).

Cheng and Blelloch [5, 8] designed and implemented a concur-
rent copying garbage collection with a bounded response time for
modern platforms. They have also introduced the minimum mu-
tator utilization measure (MMU) to verify that the collector does

4 This performance is identical to our non-copying concurrent mark-sweep
collector. Hence, with CHICKEN there is no measurable overhead to copy-
ing in this test.

not use up the CPU time when the program is supposed to use it.
The Sapphire collector [18] is a concurrent copying collector for
Java. Sapphire achieves low overhead and short pauses. However,
both collectors are targeted at high level programs that make little
(or no) use of fine-grained synchronization. They both employ a
blocking mechanism in the write-barrier while relocating volatile
variables. Thus, Sapphire and the Cheng-Blelloch collectors can-
not not support lock-free programs. In particular, if the collector
is preempted, program threads may need to block and wait until it
resumes.

The Metronome is a real-time garbage collector [2] for Java,
which serves IBM’s WebSphere Real-time Java Virtual Machine.
The Metronome employs a Brook-style barrier and a time-based
collection scheduling to obtain consistently high mutator utiliza-
tion. To avoid fragmentation at a reasonable cost, mark-sweep is
used with an occasional partial compaction. The Metronome does
not currently support multiprocessing or atomic operations. It ob-
tains pauses around the millisecond, which is two degrees of mag-
nitude higher than the pauses obtained by the concurrent collectors
presented in this paper.

Herlihy and Moss described the first mechanism for lock-free
copying garbage collection [17]. However, their time and space
overhead would be prohibitive for use in modern high performance
systems.

Recently, the STOPLESS collector was proposed by Pizlo et
al. [25]. As far as we know, this is the first collector that provides
real-time guarantees, concurrency, and support for lock-free pro-
gram that employ fine-grained synchronization. STOPLESS reports
pauses at the levels of microseconds. In this paper, we provide two
alternative real-time concurrent collectors that reduce the overhead
of STOPLESS, and provide unprecedented short and predictable re-
sponse times. Nevertheless, each of these new collectors has a dis-
advantage, clearly stated in this paper. We study and compare the
three collectors.

Several papers have proposed using special hardware to support
real-time garbage collection. One recent such work is Click et al.’s
real-time collector for Azul Systems [9] which runs a mark-sweep
collector and performs partial compaction, using special hardware
to atomically and efficiently switch application accesses from an
old copy of an object to its new clone. Another recent approach is
Meyer’s real-time garbage-collected hardware system [23].

Several compacting collectors are known in the literature [19].
The recent Compressor [20] is an efficient concurrent compactor.
However, the concurrent Compressor suffers from a trap storm in
one of its phases that yields very low processor utilization for an
interval that may last tens of milliseconds.

Concurrent collectors (e.g., [29, 10, 6, 26, 4]) and on-the-fly
collectors (e.g., [11, 14, 13, 21, 1]) have been designed since the
70’s, but except for the ones discussed above, none of them moves
objects concurrently with program execution.

11. Conclusion
We have proposed two new concurrent real-time garbage collector
for managed languages: CLOVER and CHICKEN. These new col-
lectors support programs that employ fine-grained synchronization
in a lock-free manner. CHICKEN uses an optimistic approach lead-
ing to the lowest overhead. It also achieves unprecedented high re-
sponsiveness, not previously achievable. The cost is that it may fail
to copy objects when low-probability races occur. CLOVER intro-
duces an interesting and novel probabilistic approach to concurrent
collectors in order to make sure that all objects are copied and still
obtain a low overhead (although not as low as CHICKEN). How-
ever, it may fail to guarantee lock-freedom with a small probability
(that can be rigorously computed). These new collectors provide
two more efficient alternatives to the recent STOPLESS collector.
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Figure 14. Distributions of transaction times on our three collectors, as well as a stop-the-world collector for comparison. We compare
against a mark-sweep collector here as it had the best worst case performance of the non-incremental stop-the-world collectors in our
infrastructure.

We studied these three collectors for the absolute and relative prop-
erties. We have also implemented all three collectors and presented
measurements of their performance and overheads.
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